#![deny(unsafe_code)]
#![no_main]
#![no_std]
#[allow(unused_imports)]
use aux14::{entry, iprint, iprintln, prelude::*};
// Slave address
const MAGNETOMETER: u16 = 0b0011_1100;
// Addresses of the magnetometer's registers
const OUT_X_H_M: u8 = 0x03;
const IRA_REG_M: u8 = 0x0A;
#[entry]
fn main() -> ! {
let (i2c1, _delay, mut itm) = aux14::init();
// Stage 1: Send the address of the register we want to read to the
// magnetometer
{
// Broadcast START
// Broadcast the MAGNETOMETER address with the R/W bit set to Write
i2c1.cr2.write(|w| {
w.start().set_bit();
w.sadd().bits(MAGNETOMETER);
w.rd_wrn().clear_bit();
w.nbytes().bits(1);
w.autoend().clear_bit()
});
// Wait until we can send more data
while i2c1.isr.read().txis().bit_is_clear() {}
// Send the address of the register that we want to read: IRA_REG_M
i2c1.txdr.write(|w| w.txdata().bits(IRA_REG_M));
// Wait until the previous byte has been transmitted
while i2c1.isr.read().tc().bit_is_clear() {}
}
// Stage 2: Receive the contents of the register we asked for
let byte = {
// Broadcast RESTART
// Broadcast the MAGNETOMETER address with the R/W bit set to Read
i2c1.cr2.modify(|_, w| {
w.start().set_bit();
w.nbytes().bits(1);
w.rd_wrn().set_bit();
w.autoend().set_bit()
});
// Wait until we have received the contents of the register
while i2c1.isr.read().rxne().bit_is_clear() {}
// Broadcast STOP (automatic because of `AUTOEND = 1`)
i2c1.rxdr.read().rxdata().bits()
};
// Expected output: 0x0A - 0b01001000
iprintln!(&mut itm.stim[0], "0x{:02X} - 0b{:08b}", IRA_REG_M, byte);
loop {}
}