[−][src]Trait rand::RngCore
pub trait RngCore { fn next_u32(&mut self) -> u32; fn next_u64(&mut self) -> u64; fn fill_bytes(&mut self, dest: &mut [u8]); fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>; }
The core of a random number generator.
This trait encapsulates the low-level functionality common to all
generators, and is the "back end", to be implemented by generators.
End users should normally use Rng
from the rand crate, which is
automatically implemented for every type implementing RngCore
.
Three different methods for generating random data are provided since the
optimal implementation of each is dependent on the type of generator. There
is no required relationship between the output of each; e.g. many
implementations of fill_bytes
consume a whole number of u32
or u64
values and drop any remaining unused bytes.
The try_fill_bytes
method is a variant of fill_bytes
allowing error
handling; it is not deemed sufficiently useful to add equivalents for
next_u32
or next_u64
since the latter methods are almost always used
with algorithmic generators (PRNGs), which are normally infallible.
Algorithmic generators implementing SeedableRng
should normally have
portable, reproducible output, i.e. fix Endianness when converting values
to avoid platform differences, and avoid making any changes which affect
output (except by communicating that the release has breaking changes).
Typically implementators will implement only one of the methods available
in this trait directly, then use the helper functions from the
rand_core::impls
module to implement the other methods.
It is recommended that implementations also implement:
Debug
with a custom implementation which does not print any internal state (at least,CryptoRng
s should not risk leaking state throughDebug
).Serialize
andDeserialize
(from Serde), preferably making Serde support optional at the crate level in PRNG libs.Clone
, if possible.- never implement
Copy
(accidental copies may cause repeated values). - do not implement
Default
for pseudorandom generators, but instead implementSeedableRng
, to guide users towards proper seeding. External / hardware RNGs can choose to implementDefault
. Eq
andPartialEq
could be implemented, but are probably not useful.
Example
A simple example, obviously not generating very random output:
#![allow(dead_code)] use rand_core::{RngCore, Error, impls}; struct CountingRng(u64); impl RngCore for CountingRng { fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } fn next_u64(&mut self) -> u64 { self.0 += 1; self.0 } fn fill_bytes(&mut self, dest: &mut [u8]) { impls::fill_bytes_via_next(self, dest) } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { Ok(self.fill_bytes(dest)) } }
Required Methods
fn next_u32(&mut self) -> u32
Return the next random u32
.
RNGs must implement at least one method from this trait directly. In
the case this method is not implemented directly, it can be implemented
using self.next_u64() as u32
or
via fill_bytes
.
fn next_u64(&mut self) -> u64
Return the next random u64
.
RNGs must implement at least one method from this trait directly. In
the case this method is not implemented directly, it can be implemented
via next_u32
or
via fill_bytes
.
fn fill_bytes(&mut self, dest: &mut [u8])
Fill dest
with random data.
RNGs must implement at least one method from this trait directly. In
the case this method is not implemented directly, it can be implemented
via next_u*
or
via try_fill_bytes
; if this generator can fail the implementation
must choose how best to handle errors here (e.g. panic with a
descriptive message or log a warning and retry a few times).
This method should guarantee that dest
is entirely filled
with new data, and may panic if this is impossible
(e.g. reading past the end of a file that is being used as the
source of randomness).
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>
Fill dest
entirely with random data.
This is the only method which allows an RNG to report errors while
generating random data thus making this the primary method implemented
by external (true) RNGs (e.g. OsRng
) which can fail. It may be used
directly to generate keys and to seed (infallible) PRNGs.
Other than error handling, this method is identical to fill_bytes
;
thus this may be implemented using Ok(self.fill_bytes(dest))
or
fill_bytes
may be implemented with
self.try_fill_bytes(dest).unwrap()
or more specific error handling.
Trait Implementations
impl Read for RngCore + 'static
[src]
impl Read for RngCore + 'static
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>
[src]
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>
Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
unsafe fn initializer(&self) -> Initializer
[src]
unsafe fn initializer(&self) -> Initializer
read_initializer
)Determines if this Read
er can work with buffers of uninitialized memory. Read more
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>
1.0.0[src]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>
Read all bytes until EOF in this source, placing them into buf
. Read more
fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>
1.0.0[src]
fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>
Read all bytes until EOF in this source, appending them to buf
. Read more
fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>
1.6.0[src]
fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>
Read the exact number of bytes required to fill buf
. Read more
ⓘImportant traits for &'a mut Wfn by_ref(&mut self) -> &mut Self
1.0.0[src]
fn by_ref(&mut self) -> &mut Self
Creates a "by reference" adaptor for this instance of Read
. Read more
ⓘImportant traits for Bytes<R>fn bytes(self) -> Bytes<Self>
1.0.0[src]
fn bytes(self) -> Bytes<Self>
Transforms this Read
instance to an [Iterator
] over its bytes. Read more
ⓘImportant traits for Chain<T, U>fn chain<R>(self, next: R) -> Chain<Self, R> where
R: Read,
1.0.0[src]
fn chain<R>(self, next: R) -> Chain<Self, R> where
R: Read,
Creates an adaptor which will chain this stream with another. Read more
ⓘImportant traits for Take<T>fn take(self, limit: u64) -> Take<Self>
1.0.0[src]
fn take(self, limit: u64) -> Take<Self>
Creates an adaptor which will read at most limit
bytes from it. Read more
Implementations on Foreign Types
impl<R> RngCore for BlockRng64<R> where
R: BlockRngCore<Item = u64>,
<R as BlockRngCore>::Results: AsRef<[u64]>,
<R as BlockRngCore>::Results: AsMut<[u64]>,
[src]
impl<R> RngCore for BlockRng64<R> where
R: BlockRngCore<Item = u64>,
<R as BlockRngCore>::Results: AsRef<[u64]>,
<R as BlockRngCore>::Results: AsMut<[u64]>,
impl<'a, R> RngCore for &'a mut R where
R: RngCore + ?Sized,
[src]
impl<'a, R> RngCore for &'a mut R where
R: RngCore + ?Sized,
impl<R> RngCore for Box<R> where
R: RngCore + ?Sized,
[src]
impl<R> RngCore for Box<R> where
R: RngCore + ?Sized,
impl<R> RngCore for BlockRng<R> where
R: BlockRngCore<Item = u32>,
<R as BlockRngCore>::Results: AsRef<[u32]>,
<R as BlockRngCore>::Results: AsMut<[u32]>,
[src]
impl<R> RngCore for BlockRng<R> where
R: BlockRngCore<Item = u32>,
<R as BlockRngCore>::Results: AsRef<[u32]>,
<R as BlockRngCore>::Results: AsMut<[u32]>,
Implementors
impl RngCore for ChaChaRng
impl RngCore for Hc128Rng
impl RngCore for IsaacRng
impl RngCore for Isaac64Rng
impl RngCore for XorShiftRng
impl<R: Read> RngCore for ReadRng<R>
impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr> where
R: BlockRngCore<Item = u32> + SeedableRng,
<R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>,impl RngCore for EntropyRng
impl RngCore for JitterRng
impl RngCore for StepRng
impl RngCore for SmallRng
impl RngCore for StdRng
impl RngCore for ThreadRng
impl RngCore for OsRng