1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
//! Minimal startup / runtime for Cortex-M microcontrollers
//!
//! This crate contains all the required parts to build a `no_std` application (binary crate) that
//! targets a Cortex-M microcontroller.
//!
//! # Features
//!
//! This crates takes care of:
//!
//! - The memory layout of the program. In particular, it populates the vector table so the device
//! can boot correctly, and properly dispatch exceptions and interrupts.
//!
//! - Initializing `static` variables before the program entry point.
//!
//! - Enabling the FPU before the program entry point if the target is `thumbv7em-none-eabihf`.
//!
//! This crate also provides the following attributes:
//!
//! - [`#[entry]`] to declare the entry point of the program
//! - [`#[exception]`] to override an exception handler. If not overridden all exception handlers
//!   default to an infinite loop.
//! - [`#[pre_init]`] to run code *before* `static` variables are initialized
//!
//! [`#[entry]`]: ../cortex_m_rt_macros/fn.entry.html
//! [`#[exception]`]: ../cortex_m_rt_macros/fn.exception.html
//! [`#[pre_init]`]: ../cortex_m_rt_macros/fn.pre_init.html
//!
//! # Requirements
//!
//! ## `memory.x`
//!
//! This crate expects the user, or some other crate, to provide the memory layout of the target
//! device via a linker script named `memory.x`. This section covers the contents of `memory.x`
//!
//! ### `MEMORY`
//!
//! The linker script must specify the memory available in the device as, at least, two `MEMORY`
//! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the
//! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well
//! as the heap,will be placed in the `RAM` region.
//!
//! ``` text
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! ```
//!
//! ### `_stack_start`
//!
//! This optional symbol can be used to indicate where the call stack of the program should be
//! placed. If this symbol is not used then the stack will be placed at the *end* of the `RAM`
//! region -- the stack grows downwards towards smaller address. This symbol can be used to place
//! the stack in a different memory region, for example:
//!
//! ``` text
//! /* Linker script for the STM32F303VCT6 */
//! MEMORY
//! {
//!     FLASH : ORIGIN = 0x08000000, LENGTH = 256K
//!
//!     /* .bss, .data and the heap go in this region */
//!     RAM : ORIGIN = 0x20000000, LENGTH = 40K
//!
//!     /* Core coupled (faster) RAM dedicated to hold the stack */
//!     CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
//! }
//!
//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
//! ```
//!
//! ### `_stext`
//!
//! This optional symbol can be used to control where the `.text` section is placed. If omitted the
//! `.text` section will be placed right after the vector table, which is placed at the beginning of
//! `FLASH`. Some devices store settings like Flash configuration right after the vector table;
//! for these devices one must place the `.text` section after this configuration section --
//! `_stext` can be used for this purpose.
//!
//! ``` text
//! MEMORY
//! {
//!   /* .. */
//! }
//!
//! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */
//! _stext = ORIGIN(FLASH) + 0x40C
//! ```
//!
//! # An example
//!
//! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the
//! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault
//! handler and the default exception handler must also be defined somewhere in the dependency
//! graph (see [`#[exception]`]). In this example we define them in the binary crate:
//!
//! ``` ignore
//! // IMPORTANT the standard `main` interface is not used because it requires nightly
//! #![no_main]
//! #![no_std]
//!
//! extern crate cortex_m_rt as rt;
//!
//! // makes `panic!` print messages to the host stderr using semihosting
//! extern crate panic_semihosting;
//!
//! use rt::entry;
//!
//! // use `main` as the entry point of this application
//! // `main` is not allowed to return
//! #[entry]
//! fn main() -> ! {
//!     // initialization
//!
//!     loop {
//!         // application logic
//!     }
//! }
//! ```
//!
//! To actually build this program you need to place a `memory.x` linker script somewhere the linker
//! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s
//! linker script: `link.x`. The required steps are shown below:
//!
//! ``` text
//! $ cat > memory.x <<EOF
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! EOF
//!
//! $ cargo rustc --target thumbv7m-none-eabi -- \
//!       -C link-arg=-nostartfiles -C link-arg=-Tlink.x
//!
//! $ file target/thumbv7m-none-eabi/debug/app
//! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..)
//! ```
//!
//! # Optional features
//!
//! ## `device`
//!
//! If this feature is disabled then this crate populates the whole vector table. All the interrupts
//! in the vector table, even the ones unused by the target device, will be bound to the default
//! exception handler. This makes the final application device agnostic: you will be able to run it
//! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x`
//! -- without hitting undefined behavior.
//!
//! If this feature is enabled then the interrupts section of the vector table is left unpopulated
//! and some other crate, or the user, will have to populate it. This mode is meant to be used in
//! conjunction with crates generated using `svd2rust`. Those *device crates* will populate the
//! missing part of the vector table when their `"rt"` feature is enabled.
//!
//! # Inspection
//!
//! This section covers how to inspect a binary that builds on top of `cortex-m-rt`.
//!
//! ## Sections (`size`)
//!
//! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would
//! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This
//! lets you distinguish how much space is taking the vector table in Flash vs how much is being
//! used by actual instructions (`.text`) and constants (`.rodata`).
//!
//! ```
//! $ size -Ax target/thumbv7m-none-eabi/examples/app
//! target/thumbv7m-none-eabi/release/examples/app  :
//! section             size         addr
//! .vector_table      0x400    0x8000000
//! .text               0x88    0x8000400
//! .rodata              0x0    0x8000488
//! .data                0x0   0x20000000
//! .bss                 0x0   0x20000000
//! ```
//!
//! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and
//! `.vector_table` under "text".
//!
//! ```
//! $ size target/thumbv7m-none-eabi/examples/app
//!   text    data     bss     dec     hex filename
//!   1160       0       0    1660     67c target/thumbv7m-none-eabi/release/app
//! ```
//!
//! ## Symbols (`objdump`, `nm`)
//!
//! One will always find the following (unmangled) symbols in `cortex-m-rt` applications:
//!
//! - `Reset`. This is the reset handler. The microcontroller will executed this function upon
//! booting. This function will call the user program entry point (cf. [`entry!`]) using the `main`
//! symbol so you may also find that symbol in your program; if you do, `main` will contain your
//! application code. Some other times `main` gets inlined into `Reset` so you won't find it.
//!
//! [`entry!`]:  macro.entry.html
//!
//! - `DefaultHandler`. This is the default handler. If not overridden using `#[exception] fn
//! DefaultHandler(..` this will be an infinite loop.
//!
//! - `HardFault`. This is the hard fault handler. This function is simply a trampoline that jumps
//! into the user defined hard fault handler named `UserHardFault`. The trampoline is required to
//! set up the pointer to the stacked exception frame.
//!
//! - `UserHardFault`. This is the user defined hard fault handler. If not overridden using
//! `#[exception] fn HardFault(..` this will be an infinite loop.
//!
//! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains
//! the initial value of the stack pointer; this is where the stack will be located -- the stack
//! grows downwards towards smaller addresses.
//!
//! - `__RESET_VECTOR`. This is the reset vector, a pointer into the `Reset` handler. This vector is
//! located in the `.vector_table` section after `__STACK_START`.
//!
//! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14
//! exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is
//! located after `__RESET_VECTOR` in the `.vector_table` section.
//!
//! - `__EXCEPTIONS`. This is the device specific interrupt portion of the vector table; its exact
//! size depends on the target device but if the `"device"` feature has not been enabled it will
//! have a size of 32 vectors (on ARMv6-M) or 240 vectors (on ARMv7-M). This array is located after
//! `__EXCEPTIONS` in the `.vector_table` section.
//!
//! - `__pre_init`. This is a function to be run before RAM is initialized. It defaults to an empty
//! function. The function called can be changed by calling the `pre_init!` macro. The empty
//! function is not optimized out by default, but if an empty function is passed to `pre_init!` the
//! function call will be optimized out.
//!
//! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or
//! `SVCall`, in the output of `objdump`,
//!
//! If you are targeting the `thumbv7em-none-eabihf` target you'll also see a `ResetTrampoline`
//! symbol in the output. To avoid the compiler placing FPU instructions before the FPU has been
//! enabled (cf. `vpush`) `Reset` calls the function `ResetTrampoline` which is marked as
//! `#[inline(never)]` and `ResetTrampoline` calls `main`. The compiler is free to inline `main`
//! into `ResetTrampoline` but it can't inline `ResetTrampoline` into `Reset` -- the FPU is enabled
//! in `Reset`.
//!
//! # Advanced usage
//!
//! ## Setting the program entry point
//!
//! This section describes how `entry!` is implemented. This information is useful to developers who
//! want to provide an alternative to `entry!` that provides extra guarantees.
//!
//! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and
//! `.data`, and enabling the FPU (if the target is `thumbv7em-none-eabihf`). `entry!` provides this
//! symbol in its expansion:
//!
//! ``` ignore
//! entry!(path::to::main);
//!
//! // expands into
//!
//! #[export_name = "main"]
//! pub extern "C" fn __impl_main() -> ! {
//!     // validate the signature of the program entry point
//!     let f: fn() -> ! = path::to::main;
//!
//!     f()
//! }
//! ```
//!
//! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from
//! `Reset`  will result in undefined behavior.
//!
//! ## Incorporating device specific interrupts
//!
//! This section covers how an external crate can insert device specific interrupt handlers into the
//! vector table. Most users don't need to concern themselves with these details, but if you are
//! interested in how device crates generated using `svd2rust` integrate with `cortex-m-rt` read on.
//!
//! The information in this section applies when the `"device"` feature has been enabled.
//!
//! ### `__INTERRUPTS`
//!
//! The external crate must provide the interrupts portion of the vector table via a `static`
//! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts`
//! section of its object file.
//!
//! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the
//! spot where IRQ0 (IRQ number 0) is located.
//!
//! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots
//! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet /
//! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None`
//! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be
//! represented by the value `0`.
//!
//! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with
//! IRQ number = 2, and `Bar`, with IRQ number = 4.
//!
//! ``` ignore
//! union Vector {
//!     handler: extern "C" fn(),
//!     reserved: usize,
//! }
//!
//! extern "C" {
//!     fn Foo();
//!     fn Bar();
//! }
//!
//! #[link_section = ".vector_table.interrupts"]
//! #[no_mangle]
//! pub static __INTERRUPTS: [Vector; 5] = [
//!     // 0-1: Reserved
//!     Vector { reserved: 0 },
//!     Vector { reserved: 0 },
//!
//!     // 2: Foo
//!     Vector { handler: Foo },
//!
//!     // 3: Reserved
//!     Vector { reserved: 0 },
//!
//!     // 4: Bar
//!     Vector { handler: Bar },
//! ];
//! ```
//!
//! ### `device.x`
//!
//! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a
//! handler for *all* the device specific interrupts then linking will fail with `"undefined
//! reference"` errors.
//!
//! We want to provide a default handler for all the interrupts while still letting the user
//! individually override each interrupt handler. In C projects, this is usually accomplished using
//! weak aliases declared in external assembly files. In Rust, we could achieve something similar
//! using `global_asm!`, but that's an unstable feature.
//!
//! A solution that doesn't require `global_asm!` or external assembly files is to use the `PROVIDE`
//! command in a linker script to create the weak aliases. This is the approach that `cortex-m-rt`
//! uses; when the `"device"` feature is enabled `cortex-m-rt`'s linker script (`link.x`) depends on
//! a linker script named `device.x`. The crate that provides `__INTERRUPTS` must also provide this
//! file.
//!
//! For our running example the `device.x` linker script looks like this:
//!
//! ``` text
//! /* device.x */
//! PROVIDE(Foo = DefaultHandler);
//! PROVIDE(Bar = DefaultHandler);
//! ```
//!
//! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler and
//! that the core exceptions use unless overridden.
//!
//! Because this linker script is provided by a dependency of the final application the dependency
//! must contain build script that puts `device.x` somewhere the linker can find. An example of such
//! build script is shown below:
//!
//! ``` ignore
//! use std::env;
//! use std::fs::File;
//! use std::io::Write;
//! use std::path::PathBuf;
//!
//! fn main() {
//!     // Put the linker script somewhere the linker can find it
//!     let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
//!     File::create(out.join("device.x"))
//!         .unwrap()
//!         .write_all(include_bytes!("device.x"))
//!         .unwrap();
//!     println!("cargo:rustc-link-search={}", out.display());
//! }
//! ```
//!
//! ## `pre_init!`
//!
//! A user-defined function can be run at the start of the reset handler, before RAM is
//! initialized. The macro `pre_init!` can be called to set the function to be run. The function is
//! intended to perform actions that cannot wait the time it takes for RAM to be initialized, such
//! as disabling a watchdog. As the function is called before RAM is initialized, any access of
//! static variables will result in undefined behavior.

// # Developer notes
//
// - `link_section` is used to place symbols in specific places of the final binary. The names used
// here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command.

#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]

extern crate cortex_m_rt_macros as macros;
extern crate r0;

use core::fmt;
use core::sync::atomic::{self, Ordering};

pub use macros::{entry, exception, pre_init};

#[export_name = "error: cortex-m-rt appears more than once in the dependency graph"]
#[doc(hidden)]
pub static __ONCE__: () = ();

/// Registers stacked (pushed into the stack) during an exception
#[derive(Clone, Copy)]
#[repr(C)]
pub struct ExceptionFrame {
    /// (General purpose) Register 0
    pub r0: u32,

    /// (General purpose) Register 1
    pub r1: u32,

    /// (General purpose) Register 2
    pub r2: u32,

    /// (General purpose) Register 3
    pub r3: u32,

    /// (General purpose) Register 12
    pub r12: u32,

    /// Linker Register
    pub lr: u32,

    /// Program Counter
    pub pc: u32,

    /// Program Status Register
    pub xpsr: u32,
}

impl fmt::Debug for ExceptionFrame {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        struct Hex(u32);
        impl fmt::Debug for Hex {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "0x{:08x}", self.0)
            }
        }
        f.debug_struct("ExceptionFrame")
            .field("r0", &Hex(self.r0))
            .field("r1", &Hex(self.r1))
            .field("r2", &Hex(self.r2))
            .field("r3", &Hex(self.r3))
            .field("r12", &Hex(self.r12))
            .field("lr", &Hex(self.lr))
            .field("pc", &Hex(self.pc))
            .field("xpsr", &Hex(self.xpsr))
            .finish()
    }
}

/// Returns a pointer to the start of the heap
///
/// The returned pointer is guaranteed to be 4-byte aligned.
#[inline]
pub fn heap_start() -> *mut u32 {
    extern "C" {
        static mut __sheap: u32;
    }

    unsafe { &mut __sheap }
}

/* Entry point */
#[doc(hidden)]
#[link_section = ".vector_table.reset_vector"]
#[no_mangle]
pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn Reset() -> ! {
    extern "C" {

        // These symbols come from `link.x`
        static mut __sbss: u32;
        static mut __ebss: u32;

        static mut __sdata: u32;
        static mut __edata: u32;
        static __sidata: u32;

    }

    extern "Rust" {
        // This symbol will be provided by the user via `#[entry]`
        fn main() -> !;

        // This symbol will be provided by the user via `#[pre_init]`
        fn __pre_init();
    }

    __pre_init();

    // Initialize RAM
    r0::zero_bss(&mut __sbss, &mut __ebss);
    r0::init_data(&mut __sdata, &mut __edata, &__sidata);

    match () {
        #[cfg(not(has_fpu))]
        () => main(),
        #[cfg(has_fpu)]
        () => {
            // We redefine these here to avoid pulling the `cortex-m` crate as a dependency
            const SCB_CPACR: *mut u32 = 0xE000_ED88 as *mut u32;
            const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
            const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;

            // enable the FPU
            core::ptr::write_volatile(
                SCB_CPACR,
                *SCB_CPACR | SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
            );

            // this is used to prevent the compiler from inlining the user `main` into the reset
            // handler. Inlining can cause the FPU instructions in the user `main` to be executed
            // before enabling the FPU, and that would produce a hard to diagnose hard fault at
            // runtime.
            #[inline(never)]
            #[export_name = "ResetTrampoline"]
            fn trampoline() -> ! {
                unsafe { main() }
            }

            trampoline()
        }
    }
}

#[allow(unused_variables)]
#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn UserHardFault_(ef: &ExceptionFrame) -> ! {
    loop {
        // add some side effect to prevent this from turning into a UDF instruction
        // see rust-lang/rust#28728 for details
        atomic::compiler_fence(Ordering::SeqCst);
    }
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultHandler_() -> ! {
    loop {
        // add some side effect to prevent this from turning into a UDF instruction
        // see rust-lang/rust#28728 for details
        atomic::compiler_fence(Ordering::SeqCst);
    }
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultPreInit() {}

/* Exceptions */
#[doc(hidden)]
pub enum Exception {
    NonMaskableInt,

    // Not overridable
    // HardFault,
    #[cfg(not(armv6m))]
    MemoryManagement,

    #[cfg(not(armv6m))]
    BusFault,

    #[cfg(not(armv6m))]
    UsageFault,

    #[cfg(armv8m)]
    SecureFault,

    SVCall,

    #[cfg(not(armv6m))]
    DebugMonitor,

    PendSV,

    SysTick,
}

extern "C" {
    fn NonMaskableInt();

    fn HardFault();

    #[cfg(not(armv6m))]
    fn MemoryManagement();

    #[cfg(not(armv6m))]
    fn BusFault();

    #[cfg(not(armv6m))]
    fn UsageFault();

    #[cfg(armv8m)]
    fn SecureFault();

    fn SVCall();

    #[cfg(not(armv6m))]
    fn DebugMonitor();

    fn PendSV();

    fn SysTick();
}

#[doc(hidden)]
pub union Vector {
    handler: unsafe extern "C" fn(),
    reserved: usize,
}

#[doc(hidden)]
#[link_section = ".vector_table.exceptions"]
#[no_mangle]
pub static __EXCEPTIONS: [Vector; 14] = [
    // Exception 2: Non Maskable Interrupt.
    Vector {
        handler: NonMaskableInt,
    },
    // Exception 3: Hard Fault Interrupt.
    Vector { handler: HardFault },
    // Exception 4: Memory Management Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: MemoryManagement,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector { handler: BusFault },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: UsageFault,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 7: Secure Fault Interrupt [only on Armv8-M].
    #[cfg(armv8m)]
    Vector {
        handler: SecureFault,
    },
    #[cfg(not(armv8m))]
    Vector { reserved: 0 },
    // 8-10: Reserved
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    // Exception 11: SV Call Interrupt.
    Vector { handler: SVCall },
    // Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: DebugMonitor,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // 13: Reserved
    Vector { reserved: 0 },
    // Exception 14: Pend SV Interrupt [not on Cortex-M0 variants].
    Vector { handler: PendSV },
    // Exception 15: System Tick Interrupt.
    Vector { handler: SysTick },
];

// If we are not targeting a specific device we bind all the potential device specific interrupts
// to the default handler
#[cfg(all(not(feature = "device"), not(armv6m)))]
#[doc(hidden)]
#[link_section = ".vector_table.interrupts"]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 240];

// ARMv6-M can only have a maximum of 32 device specific interrupts
#[cfg(all(not(feature = "device"), armv6m))]
#[doc(hidden)]
#[link_section = ".vector_table.interrupts"]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 32];